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SYNTHESIS



1.  Increased nutrient loading results in increased incidence or size of hypoxia
2.  Behavioral and physiological responses to hypoxia by individual organisms

a) nekton
b) zooplankton
c) epibenthos
d) benthic organisms

3.  Benthic community response to hypoxia
4. Commercial fisheries species response to hypoxia

a) menhaden
b) shrimp
c) other large nekton

5.  Sea turtle and marine mammal responses to hypoxia
6.  Food web responses to hypoxia or to causes of hypoxia

a) by primary producer community
b) by secondary producer or higher
c) jellyfish

7.  Officer and Ryther's [1980] prediction supported (regarding Si:N loading ratio)
8.  Evidence for rapid decline in resource after period of gain (a catastrophic 
decline)
9.  Societal recognition of the effects of hypoxia on fisheries

a) recognize possible effects
b) implemented management to reduce nutrient loading
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Flagellates

Evidence of Increased Diatom production, as N ↑
Evidence of Silica Limitation, as Si↓ & Si:N of 1:1

(Turner & Rabalais 1994;
Turner et al. 1998;
Dortch et al. 2001)
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Aurelia moon jelly 1995

1987

Jellyfish 
abundance: 

an indicator of 
altered food 

webs

Source: M. Graham, DISL
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TABLE 1.  Behavioral and physiological responses of different organisms to hypoxia. 

 
Organism 

 
Response to Hypoxia 

 
Reference 

 
Shrimp 
 
Penaeus aztecus 
Penaeus setiferus 
Penaeus monodon 

 
detect and avoid 
detect and avoid 
decrease hemocyte 

phagocytosis 

 
Renaud, 1986 
Renaud, 1986 
Direkbusarakom & Danayadol, 
1998 
 

Penaeus 
stylirostris 

decrease total hemocyte count 
increased mortality induced 

by Vibrio alginolyticus 

Le Moullac et al., 1998 
Le Moullac et al., 1998 

 
Crabs 
 
Callinectes 
sapidus 

 
detect and avoid 
decrease feeding 
reduce growth rate 
Acute Hypoxia 
increase ventilation rate 
increase heart rate 
slight increase in cardiac 
output 
Chronic Hypoxia 
decrease oxygen consumption 
no change in ventilation 
no change in heart rate 
increase hemocyanin O2 

affinity and concentration 

 
Das & Stickle, 1994 
Das & Stickle, 1993 
Das & Stickle, 1993 
 
Batterton & Cameron, 1978 
deFur & Pease, 1988 
deFur & Pease, 1988 
 
Das & Stickle, 1993 
deFur & Pease, 1988 
deFur & Pease, 1988 
deFur et al., 1990 

 
Callinectes similis 

 
detect and avoid 
increase oxygen consumption 
decrease feeding 

 
Das & Stickle, 1994 
Das & Stickle, 1993 
Das & Stickle, 1993 

 
Gastropod Molluscs 
 
Stramonita 
haemastoma 

 
reduce growth rate 
large reduction in metabolism 
decrease oxygen consumption 

 
Das & Stickle, 1993 
Liu et al., 1990 
Das & Stickle, 1993 

 
Bivalved Molluscs 
 
Crassostrea 
virginica 

 
switch to anaerobic 
metabolism 
small reduction in metabolism 
decrease production of 

reactive oxygen species

 
Stickle et al., 1989 
Stickle et al., 1989 
Boyd & Burnett, 1999 (Burnett and Stickle 2001)
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(Rabalais et al., 2001)
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Characteristics of Louisiana Shelf 
Benthos Subjected to Seasonally 

Severe Hypoxia
• Reduced species richness
• Severely reduced abundances (but never azoic)
• Low biomass
• Limited taxa (none with direct development)
• Characteristic resistant infauna (e.g., a few 

polychaetes and sipunculans)
• Limited recovery following abatement of oxygen 

stress

(Rabalais et al., 2001b)



 Severe hypoxia Normoxic  
Order/Genus Settlement Traps Sediment Settlement Traps Sediment 
Enoplida     
    
Dolicholaimus • — — — 
Halalaimus • — — • 
Nemanema — — — • 
Oncholaimus • — — — 
Viscosia • — — — 
    
Chromadorida     
     
Cyartonema • — — • 
Leptolaimus — — — • 
Microlaimus • — — — 
Neochromadora • — — — 
Paracanthonchus • — — • 
Prochromadorella • — — — 
Pselionema • — — — 
Sabatieria — — — • 
Spirinia • — — — 
Synonchiella • — — — 
     
Monhysterida     
     
Ascolaimus — — — • 
Cobbia • — — — 
Daptonema • •a — • 
Metadesmolaimus • — — — 
Odontophora • — — • 
Sphaerolaimus • — — — 
Terschelingia • — — • 
Parodontophora • — — — 

 

 

a represented by a single specimen 

Nematodes were often 
collected (in settlement 
traps) from the water 
column above hypoxic 
or anoxic sediments

In normoxic conditions, 
they were found in the 
sediments.

(Wetzel et al. 2001)



•Most benthic recruitment is via meroplanktonic larvae.

•Amphipods and harpacticoid copepods rely on direct development and 
are characteristically absent from hypoxic areas.

•Benthic polychaete larvae are distributed throughout the water column 
regardless of low oxygen conditions.

•Paraprionospio pinnata, delayed settlement and remained in the water 
column until oxygen values returned to a level above 2.0 mg l-1.

•Barnacle cyprid larvae and holoplankton (e.g., chaetognaths) were 
reduced in densities below the pycnocline when oxygen concentrations 
were low.  

•Species composition and abundance of organisms in the sediment 
reflected patterns of pelagic larval abundance.  

•The supply of meroplanktonic larvae appears to determine the recovery 
population.

•Recovery of pericarideans, molluscs and echinoderms takes longer.
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Figure 7.  Trend in annual brown shrimp catch per unit effort (CPUE) from 
Texas and Louisiana from 1960 through 1998. 
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River discharge ↓
Salinity in nursery area ↑
Preferable nursery habitat for brown shrimp ↑
Less hypoxia ↓
Suitable habitat for brown shrimp offshore ↑

River discharge ↑
Salinity in nursery area ↓
Preferable nursery habitat for brown shrimp ↓
More hypoxia ↑
Suitable habitat for brown shrimp offshore ↓

…and the ultimate predator

Source: N. N. Rabalais, LUMCON

(Downing et al. 1999)



Gulf of Mexico shrimp landings (annual)
and the area of wetland in each estuary (Turner, 1977)
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•Fishery yields have remained strong for the northern Gulf over the last 40 
years.  But….  

•Menhaden production in years with widespread hypoxia were lower (log 
book analysis). (Smith 2001)

•Effects of hypoxia on distributions of nekton. (Several authors)

•Pattern of pelagic species becoming more abundant and some dominant 
demersal species declining in prominence within trawl bycatch, particularly   
between the 1930s and 1989. (Chesney and Baltz 2001)

•Other effects on nekton are probable.  

•Other impacts of greater magnitude may have more significant effects than 
hypoxia on the community structure and secondary production of nekton.  

•The effects of hypoxia on the nekton in the northern Gulf may be buffered by 
characteristics of the basin, the fauna and the ecosystem.  These 
characteristics may partially offset some of the negative impacts of hypoxia 
seen in other systems by providing spatial and temporal refuges for demersal
nekton. 



• Many of the behavioral responses 
prey and predators to hypoxia docum
shelf are consistent with those in other areas.  

• These developments are observed in many other coastal 
ecosystems, to lesser or greater
substantially or distin

• The species may be different an
duration may vary among regions, but these broadly described 
patterns are familiar patterns fo
including the Baltic, Black Sea an

of invertebrate and vertebrate 
ented for the Gulf of Mexico 

 degrees of detail, but in no 
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