Multi-Year Current and Surface Gravity Wave Observations Near Florida’s Big Bend Coast

Ekaterina Maksimova
and Allan Clarke
Department of Earth, Ocean & Atmospheric Science
Florida State University

NGI 2011 Annual Conference
Session 15
Thursday, May 19, 8:45 – 10:15 AM
Objective:

Gag grouper, red tide, oil spills
Understand the subtidal currents (along- and cross-isobath) and how they may be influenced by:

- The 90° bend in Florida’s Big Bend Coast
- Wind (local and remote via long shelf waves)
- Vertical stratification (summer/winter)
- River discharge (horizontal density gradients)
- Surface gravity waves (Stokes’ Drift)
- Water column depth
Study region:
Florida Big Bend, where West Florida Shelf bends by 90°.

Never-before-analyzed ADCP current and surface gravity wave records at

Site A: ~3 yrs (2008-2010)
Site S: ~1 yr (2009, 2010)
Big Bend Region with local major axis ellipses for currents

Along the major axis of variability the currents have the same sign at all depths. The depth-averaged flow is within about 10° of being along the local isobaths.
What is wind orientation for best correlation with the depth-averaged along-shelf flow? What are the dynamical implications?
Correlation of along-isobath current at K-Tower and wind stress in all directions from southward (-90°) to northward (90°), winter 2009.

⇒ Remote forcing dominates in driving along-shelf currents near the Bend ⇒ Low-frequency long shelf-trapped wave dynamics.
Along-isobath seasonal current at K-Tower

Along-isobath direction

Calendar month

J F M A M J J A S O N D

cm/sec

-4 -2 0 2 4

Surface
Depth-ave
Bottom
Cross-isobath seasonal current at K-Tower

- **Surface** (red line)
- **Depth-average** (green line)
- **Bottom** (blue line)

**Graph Details:**
- **Y-axis:** cm/sec
- **X-axis:** Calendar month
- **Months:** Jan (J), Feb (F), Mar (M), Apr (A), May (M), June (J), July (J), Aug (A), Sep (S), Oct (O), Nov (N), Dec (D)
- **Direction:** Cross-isobath direction
Much of the along-isobath monthly flow is remotely wind-driven.

\( v_{KT} \) = depth-averaged along-isobath flow at K-Tower
Seasonal flows driven by density gradients

- In shallow water same amount of heat goes into a smaller water depth; increased temperature in shallower water, lighter water, and hence there’s a horizontal density and pressure gradient and current. Geostrophic current depends on depth.
Seasonal flows can also be driven by horizontal salinity gradients, mainly due to coastal fresh water from the Apalachicola River.

Actually, salinity mainly explains the density gradient.
\[ \nu_z = -g\rho_x/(\rho f) \]

\[ \Delta\nu = \nu(-4m) - \nu(-11m) = -g(\rho f)^{-1} \int_{-11m}^{-4m} \rho_x dz \]
Surface Waves & Stokes’ Drift

direction of wave propagation

Stokes’ drift
Wave characteristics

**Significant wave height**

**Period at the peak of the wave spectrum**
Wave direction

90° means that the waves’ direction is northward.
Stokes’ drift should be “added on” to what we measure at a fixed site (e.g., K-Tower).

Stokes’ drift at K-Tower is northward but is typically less than 0.5 cm/sec at the uppermost measurement 4 m beneath the surface. It’s even smaller at the shallower sites.
Summary

• Big Bend sub-tidal & seasonal currents are mainly along-isobath, approximately independent of depth and remotely driven by the alongshore winds on the West Florida Shelf to the south.

• Part of the seasonal flow is due to seasonal changes in density gradients perpendicular to the coast. The salinity gradient is mostly responsible for the density gradient.

• The Big Bend across shelf flow is directed mainly away from the coast at the surface and toward the coast nearer the bottom.

• Stokes’ drift does not significantly change these results.
We gratefully acknowledge Stephanie White and Peter Lazarevich (FSU Current Meter Facility) for collecting the data. Funding was provided by the State of Florida and the NGI.